martes, 14 de octubre de 2008

DIAGRAMA HIERRO CARBONO

ALEACIONES HIERRO - CARBONO (Diagrama Hierro carbono)









INTRODUCCIÓN
Todas las posibles aleaciones Hierro - Carbono y sus “formas” con la temperatura están
representadas en lo que se llama el “Diagrama de Equilibrio de Fases Sistema “Hierro
Carbono”. (ver gráfico). Con la porción del Diagrama hasta 5% en peso del carbono.
En este diagrama vemos lo siguiente. El punto de fusión del hierro puro (0% C) es
1538º C y luego que se agrega carbono disminuye el punto de fusión de la aleación
hasta llegar a 1154º C cuando contiene 4.3% Carbono (ó 4.26%C) y luego con mayor
cantidad de carbono vuelve a subir el punto de fusión. Por esa razón ese punto mínimo
se llama “eutéctico” del griego “fácil fusión” y es muy importante para poder licuar el
metal y verterlo en moldes.
Otro aspecto importante es el que se refiere a la máxima solubilidad de carbono en la
red de hierro (sólido) que se produce a 1148º C y es de 2.11% C. Nótese que el hierro
entre la temperatura 1394º y 912º C, se llama hierro gama y corresponde a la forma
cristalina de cubo de caras centradas. El hierro en esa forma cristalina tiene los huecos
más grandes en la red, pudiendo así acomodar los átomos de carbono con distorsión no
tan pronunciada como es el caso de la forma cristalina cubo de cuerpo centrado
llamada hierro alfa, razón por la cual el Feγ disuelve mayor cantidad de carbono que el
Feα. Esta disolución se refiere a aceptar el carbono en su red y formar una fase
totalmente homogénea, tal como la disolución de la sal en el agua. Se puede introducir
más carbono en el hierro líquido pero al enfriar, éste expulsa el exceso de carbono de la
red ya sea en forma de carbono puro (forma cristalina compleja llamada grafito) u otras
veces en forma de un compuesto de hierro rico en carbono, un carburo muy duro
llamado cementita con la siguiente fórmula química Fe3C. Esto es igual que al enfriar
una solución de agua con sal, ésta alcanza el límite de solubilidad de la sal con el agua,
ya que ésta disminuye con la temperatura, y la sal precipita al ser expulsada de la
solución.
Aquí vemos que el exceso de carbono puede precipitar en dos formas, y esto es lo que
está representado en el diagrama, la línea de segmentos se refiere a cuando precipita
grafito y la línea sólida a cuando precipita Fe3C. El sistema Fe-Fe3C es muy importante,
porque cuando hay menos cantidad de carbono, menos de 2% las aleaciones contienen
el carbono en forma de cementita y reciben el nombre de ACEROS y son posibles de
deformar sin quebrarse. Cuando tienen mayor cantidad de carbono reciben el nombre
de FUNDICIONES, en ellas el carbono en exceso precipita como grafito y aún más
como láminas o escamas de grafito que interrumpen la red de hierro, tornándolos

quebradisos.
















Microestructura de distintas Fundiciones

Como en el proceso de reducción de los minerales de hierro se disuelve hasta
alrededor de 4% de carbono, el hierro bruto o arrabio es una fundición y es el
producto que se obtiene del alto horno. (Ver capítulo Siderurgia)
Pero aún en las fundiciones el proceso de precipitación del carbono a grafito requiere
tiempo, o sea, un enfriamiento más o menos lento, de lo contrario se produce
“fundición blanca”, en ella el exceso de carbono está en forma de cementita. Cuando
el carbono está en forma de grafito se llama “Fundición Gris”.

Este efecto del tiempo sobre las formas de distribución del carbono son muy
importantes en el acero, pues en ellas se basa el endurecimiento del acero por
templado o enfriamiento rápido. Se calienta el acero en el rango austenítico y luego se
enfría bruscamente en agua o aceite, con ello en todas las partes que se enfriaron
suficientemente rápido el carbono no tiene tiempo de salir de la red del hierro y queda
aprisionado en exceso en la red de ferrita, esta ferrita con exceso de carbono se llama
Martensita (en honor a Martens) y la dureza del acero se debe a la distorsión producida
por el exceso de carbono, ya que la solubilidad máxima por el carbono en la ferrita es
de solo 0.02% C. Por otro lado si se vuelve a calentar este acero templado o
martensítico, empieza a salir el carbono lentamente, esto se llama revenido y se hace
para disminuir la dureza del acero y no dejarlo tan frágil (o quebradizo) pudiendo llegar
a obtener Ferrita + Cementina Globular. (Ver figura 2)
Históricamente, el primer hierro líquido obtenido por el hombre fue la fundición, o sea,
hierro con alto carbono y es muy posible que haya sido fundición blanca, ya que no
contenía tanto carbono como el arrabio que se obtiene hoy en día, con lo que tenía
tendencia a formar cementita en gran cantidad, tornándose muy frágil, no forjable y
luego inútil para su uso inmediato, razón por la cual fue rechazado. Pero en el siglo XVI
se descubrió que al calentar este material mezclado con mineral de hierro se oxidaba el
carbono de la fundición formando gas CO y se obtenía un producto que era forjable y
recibió el nombre de fundición maleable.













Ferrita
De Wikipedia, la enciclopedia libre
Saltar a navegación, búsqueda
La ferrita en la metalurgia se denomina hierro alfa. Cristaliza en el sistema cúbico y se emplea en la fabricación de: imánes permanentes aleados con cobalto y bario; en núcleos de inductancias y transformadores con níquel, cinc o manganeso, ya que en ellos quedan eliminadas prácticamente las Corrientes de Foucault.
Las ferritas son materiales cerámicos ferromagnéticos, compuestos por hierro, boro y bario, estroncio o molibdeno.
Las ferritas tienen una alta permeabilidad magnética, lo cual les permite almacenar campos magnéticos con más fuerza que el hierro. Las ferritas se producen a menudo en forma de polvo, con el cual se pueden producir piezas de gran resistencia y dureza, previamente moldeadas por presión y luego calentadas, llegar a la temperatura de fusión, dentro de un proceso conocido como sinterización. Mediante este procedimiento se fabrican núcleos para transformadores, bobinas y otros elementos eléctricos o electrónicos.
Los primeros ordenadores estaban dotados de memorias que almacenaban sus datos en forma de campo magnético en núcleos de ferrita, los cuales estaban ensamblados en conjuntos de núcleos de memoria.

Un toroide hecho con ferrita bobinado para uso como transformador de corriente eléctrica
El polvo de ferrita se usa también en la fabricación de cintas para grabación; en este caso, el material es trióxido de hierro. Otra utilización común son los núcleos de ferrita, usados popularmente en multitud de cables electrónicos para minimizar las interferencias electromagnéticas (EMI). Se disponen en alojamientos de plástico que agarran el cable mediante un sistema de cierre. Al pasar el cable por el interior del núcleo aumenta la impedancia de la señal sin atenuar las frecuencias más bajas. A mayor número de vueltas dentro del núcleo mayor aumento, por eso algunos fabricantes presentan cables con bucles en los núcleos de ferrita.
Este polvo de ferrita es utilizado también como tóner magnético de impresoras láser, pigmento de algunas clases de pintura, polvo de inspección magnético (usado en soldadura), tinta magnética para imprimir cheques y códigos de barras y, a su vez, con dicho polvo y la adición de un fluido portador (agua, aceite vegetal o mineral o de coche) y un surfactante o tensoactivo (ácido oleico, ácido cítrico, lecitina de soja) es posible fabricar ferrofluido casero.










Perlita
Microestructura de la Perlita
Se denomina perlita a la microestructura formada por capas o láminas alternas de las dos fases (α y cementita) durante el enfriamiento lento de un acero a temperatura eutectoide. Se le da este nombre porque tiene la apariencia de una perla al observarse microscópicamente a pocos aumentos.
La perlita aparece en granos denominados "colonias"; dentro de cada colonia las capas están orientadas esencialmente en la misma dirección y esta dirección varía de una colonia a otra. Las capas delgadas claras son de ferrita, y la cementita aparece como capas delgadas más oscuras. La mayoría de las capas de cementita son tan delgadas que los límites de fases adyacentes no se distinguen.
Enfriando la austenita con una concentración intermedia de carbono, se transforma en fase ferrita, con un contenido de carbono inferior, y en cementita, con un porcentaje muy superior de carbono. Los átomos de carbono necesitan difundir para segregar selectivamente. Los átomos de carbono difunden de la región ferrítica a las capas de cementita para conseguir la concentración del 6,70% en peso de C y la perlita se propaga, a partir de los límites de grano al interior de los granos austeníticos. La perlita forma láminas porque los átomos de carbono necesitan difundir la distancia mínima dentro de su estructura.
Hay dos tipos de perlita:
Perlita fina: dura y resistente.
Perlita gruesa: menos dura y más dúctil.
La razón de este comportamiento radica en los fenómenos que ocurren en los límites de fases (α y cementita). En primer lugar, hay un alto grado de adherencia entre las dos fases en el límite. Por lo tanto, la resistencia y la rigidez de la fase cementita restringe la deformación de la fase ferrita, más blanda, en las regiones adyacentes al límite; es decir, la cementita refuerza a la ferrita. Este grado de reforzamiento es más elevado en la perlita fina porque es mayor la superficie de límites de fases por unidad de volumen del material. Además, los límites de fases sirven de barrera para el movimiento de dislocaciones, del mismo modo que los límites de grano. En la perlita fina y durante la deformación plástica las dislocaciones deben cruzar más límites de fases que en la perlita gruesa. De este modo el mayor reforzamiento y restricción del movimiento de las dislocaciones en la perlita fina se traducen en mayor dureza y resistencia mecánica.
La perlita gruesa es más dúctil que la perlita fina a consecuencia de la mayor restricción de la perlita fina a la deformación plástica.




Cementita
La cementita o carburo de hierro se produce por efecto del exceso de carbono sobre el límite de solubilidad. Si bien la composición química de la cementita es Fe3C, la estructura cristalina es del tipo ortorrómbica con 12 átomos de hierro y 4 átomos de carbono por celda.
La cementita es muy dura y frágil y, por lo tanto, no es posible de utilizar para operaciones de laminado o forja debido a su dificultad para ajustarse a las concentraciones de esfuerzos.




Martensita
Se puede apreciar cómo γ es una FCC y por lo tanto característica de la austenita. En cambio, al lado se tiene la estructura α, la cual es característica de la martensita.
Martensita es el nombre que recibe la fase cristalina BCT, en aleaciones ferrosas. Dicha fase se genera a partir de una transformación de fases sin difusión, a una velocidad que es muy cercana a la velocidad del sonido en el material.
Por extensión se denominan martensitas todas las fases que se producen a raíz de una transformación sin difusión materiales metálicos.


Generalidades
La transformación martensítica no sólo ocurre en el acero, sino que otros sistemas de aleación se caracterizan por experimentar transformaciones sin difusión.




Ledeburita
Ledeburita es una mezcla eutéctica que contiene un 95,7% de hierro y un 4,3% de carbono, por lo tanto no es constituyente de los aceros sino de las fundiciones. La lebeburita se llama así en homenaje a Adolf Lebedur (1836-1916).
Es el constituyente eutéctico que se forma al enfriar la fundición líquida de 4.3% C desde 1145°C. Está formada por 52% de cementita y 48% de austenita de 2% C. La ledeburita no existe a temperatura ambiente en las fundiciones ordinarias debido a que en el enfriamiento se transforma en cementita y perlita; sin embargo en las fundiciones se pueden conocer la zonas donde existió la ledeburita por el aspecto eutéctico con que quedan las agrupaciones de perlita y cementita. A veces, a éstas zonas donde existió la Ledeburita se la llama Ledeburita Transformada.
Ya que la transformación martensítica no implica difusión, ocurre casi instantáneamente; los granos martensíticos se nuclean y crecen a velocidad muy alta: la velocidad del sonido dentro de la matriz austenítica. De este modo, a efectos prácticos, la velocidad de transformación de la austenita es independiente del tiempo.
La estructura de la martensita tiene la apariencia de láminas o de agujas(variantes). La fase blanca es austenita que no se transforma durante el temple rápido. La martensita también puede coexistir con otros constituyentes, como la perlita.
El enfriamiento rápido (o temple) del acero austenizado, hasta temperatura próxima a la ambiental, origina otro microconstituyente denominado martensita, que resulta como una estructura de no equilibrio de la transformación sin difusión de la austenita. Se puede considerar un producto de transformación competitivo con la perlita o la bainita. La transformación martensítica tiene lugar a velocidades de temple muy rápidas que dificultan la difusión del carbono. Si hubiera difusión se formarían las fases ferrita y cementita.
La transformación martensítica no es bien conocida. Sin embargo, gran número de átomos se mueven de modo cooperativo, lo que representa pequeños desplazamientos de un átomo respecto a sus vecinos. Esta transformación significa que la austenita CCC experimenta una transformación polimórfica a la martensita tetragonal centrada en el cuerpo (TCC). La celdilla unidad de esta estructura cristalina es un cubo, alargado en una de sus tres dimensiones, centrado en el cuerpo BCC; esta estructura es diferente de la ferrita CC. Todos los átomos de carbono permanecen como solutos intersticiales en la martensita y constituyen una disolución sólida sobresaturada capaz de transformarse rápidamente en otras estructuras si se calienta a temperaturas que implican una apreciable velocidad de difusión. La mayoría de los aceros retienen la estructura martensítica casi indefinidamente a temperatura ambiente.
Se llama martensita en honor al metalúrgico alemán Adolf Martens (1850-1914).
Con un tratamiento mecánico adecuado la estructura puede presentar una sola variante. Un caso particular son las aleaciones martensíticas ferromagnéticas, con interesantes propiedades al aplicarles un campo magnético (magnetoestricción, Villary effect).


Austenita
La austenita es una forma de ordenamiento distinta de los átomos de hierro y carbono. Ésta es la forma estable del hierro puro a temperaturas que oscilan entre los 900 a 1400 ºC.
Es la forma cúbica centrada en las caras (FCC) del hierro. También se le conoce como austerita. Admite el temple, mas no es magnético.
La estructura cristalina de la austenita es del tipo cúbica, de caras centradas, en donde se diluyen en solución sólida los átomos de carbono en los intersticios, hasta un máximo tal como lo muestra el diagrama de fase Fe-C. Esta estructura permite una mejor difusión con el carbono, acelerando así el proceso de carburación del acero. La solubilidad máxima es sólo del 1.67%. Hay que recordar que por definición los aceros contienen menos de 1.67% de carbono y pueden tener disuelto el carbono completamente a altas temperaturas.
La austenita no es estable a temperatura ambiente excepto en aceros fuertemente aleados como algunos inoxidables. La austenita es blanda y dúctil y, en general, la mayoría de las operaciones de forja y laminado de aceros se efectúa a aproximadamente los 1100 ºC, cuando la fase austenítica es estable.
Finalmente, a diferencia de la ferrita, la austenita no es ferromagnética a ninguna temperatura.


Bainita
Estructura de la bainita mediante micrografía electrónica de réplica. Una aguja de bainita va de la parte inferior derecha al vértice superior izquierdo y consiste en partículas alargadas de cementita dentro de una matriz de ferrita. La fase que rodea la aguja bainítica es la martensita.
La bainita es una mezcla de fases de ferrita y cementita y en su formación intervienen procesos de difusión.
La bainita forma agujas o placas, dependiendo de la temperatura de transformación. Los detalles microestructurales de la bainita son tan finos que su resolución sólo es posible mediante el microscopio electrónico. Está compuesta de una matriz ferrítica y de partículas alargadas de cementita. La fase que rodea las agujas es martensita.
La transformación bainítica también depende del tiempo y de la temperatura y se puede representar en un diagrama de transformación isotérmica , a temperaturas inferiores a las de formación de la perlita.
En los tratamientos isotérmicos realizados entre 540º-727ºC, se forma perlita y entre 215-540ºC, el producto de transición es la bainita. Las transformaciones perlítica y bainítica compiten entre sí y sólo una parte de una aleación se puede transformar en perlita o en bainitia. La transformación en otro microconstituyente sólo es posible volviendo a calentar hasta formar austenita.
Sin embargo, a diferencia de la perlita, la ferrita y la cementita no están presentes en formas que dependen de la aleación y la temperatura de transformación. La microestructura depende de la temperatura y se distinguen dos morfologías:
Bainita superior : Se forma en rangos de temperatura inmediatamenta inferiores a los de perlita. se compone de agujas o bastones de ferrita con cementita entre ellas.
Bainita inferior: Se forma a temperatura del orden de la martensita Ms (ligeramente superiores ).
Se produce preferentemente en transformaciones isotérmicas (austempering), aunque también puede hacerlo a enfriamiento continuo y corresponde a una transformación intermedia entre la que corresponde a perlita y a martensita.
Estructura de la bainita mediante micrografía electrónica de réplica. Una aguja de bainita va de la parte inferior derecha al vértice superior izquierdo y consiste en partículas alargadas de cementita dentro de una matriz de ferrita. La fase que rodea la aguja bainítica es la martensita



1 comentario:

RENAN AVILA dijo...

Lo mismo el informe del diagrama hierro carbono está excelente.-Su nota es de 10/10.